Maple syrup, Canada’s “liquid gold,” is among the 10 most adulterated foods globally.
Maple syrup’s desirability has made it a target for delinquent activities, including food fraud and theft. In 2011 and 2012, almost 3,000 tonnes of maple syrup were stolen from the Strategic Reserve in Québec.
The Great Maple Syrup Heist reflects the food’s status as a highly valuable commodity and the target of delinquent activities.
CBC’s The National takes a look at the Global Strategic Maple Syrup Reserve in Laurierville, Que.
In addition to the threat posed to maple syrup by thieves and smugglers, unreliable production yields due to climate events have required establishing production quotas to stabilize pricing and supply.
As a consequence, there have been reports of prohibition-style smuggling and sugar syrups labelled as maple syrup permeating the market. These actions cheat consumers and introduce food safety risks into the supply chain.
Consumers pay more for a lower value product. In addition, the introduction of other sugars or sugar syrups may pose risks to individuals with sugar sensitivities, as maple syrup has a lower glycemic index than white sugar or corn syrups.
Fingerprinting maple syrup glow
As such, there is a need for the development of more accurate and rapid testing tools to monitor maple syrup fraud.
Our research team at the University of Guelph has been developing methods to detect maple syrup fraud. We use fluorescence fingerprinting, which analyzes how certain molecules in maple syrup glow when exposed to UV and visible light, to see if there is any potential maple syrup adulteration.
In UV light, maple syrup naturally glows. Fluorescence fingerprinting maps the intensity of the light emitted by these specific fluorescent (glowing) compounds, and can provide a unique 3D rendering of a sample’s composition while also reporting on its quality, safety and identity.
Using key features found in the fluorescence fingerprints, we explored ways to better detect maple syrup adulteration even when the levels are as low as one per cent.
Our study examines the adulteration of dark and amber maple syrups with common maple syrup adulterants, at percentages ranging from one to 50 per cent.
Distinct fluorescence fingerprints were found for each tested syrup and mixture, revealing features that can be used to distinguish pure from adulterated samples.
Machine learning and identification
Maple syrup glows under UV light. (M. Singh), Author provided
The fluorescence fingerprints obtained when the samples were exposed to UV and visible light show several features (or peaks) that gradually changed in samples tampered with adulterants. We were able to correctly detect adulteration in 70 to 100 per cent of samples, depending on how the features were quantified and analyzed, by creating a fluorescence index or by using machine learning techniques.
To fully validate this approach, we will need to use larger datasets that will help us control for other factors — like the environments maple trees grow in — that may affect the content of the syrups.
Other common fingerprinting techniques, such as DNA barcoding that examines short DNA fragments, can detect adulteration in other foods, like fish or sausages.
These methods don’t work well for maple syrup because the extensive processing required to transform sap into syrup potentially degrades the DNA.
In contrast, fluorescence fingerprints rely on a food’s chemical composition, so identifying the presence of adulterants can happen even in highly processed samples. Most foods naturally contain intrinsic fluorescent compounds, which means they glow under UV and visible light — the amount of and type of glow represent distinguishing characteristics.
Quality control
Since using fluorescent fingerprinting only requires the use of light, it is a non-invasive, efficient and affordable strategy for checking whether maple syrup contains any other sugar syrups. It is also fast, providing information about a sample within minutes.
This approach can be applied at different points in the supply chain as part of quality assurance and control. This would ensure that consumers receive safe, high-quality foods, and that they are not cheated financially. Confirming the quality of maple syrup would also protect the brand reputation of Canadian products.
Maia Zhang, research assistant at the University of Guelph, co-authored this article.


Toyota’s Surprise CEO Change Signals Strategic Shift Amid Global Auto Turmoil
Once Upon a Farm Raises Nearly $198 Million in IPO, Valued at Over $724 Million
Global PC Makers Eye Chinese Memory Chip Suppliers Amid Ongoing Supply Crunch
TSMC Eyes 3nm Chip Production in Japan with $17 Billion Kumamoto Investment
Tencent Shares Slide After WeChat Restricts YuanBao AI Promotional Links
Prudential Financial Reports Higher Q4 Profit on Strong Underwriting and Investment Gains
Alphabet’s Massive AI Spending Surge Signals Confidence in Google’s Growth Engine
Nvidia, ByteDance, and the U.S.-China AI Chip Standoff Over H200 Exports
Baidu Approves $5 Billion Share Buyback and Plans First-Ever Dividend in 2026
Ford and Geely Explore Strategic Manufacturing Partnership in Europe
Instagram Outage Disrupts Thousands of U.S. Users
Nvidia CEO Jensen Huang Says AI Investment Boom Is Just Beginning as NVDA Shares Surge
TrumpRx Website Launches to Offer Discounted Prescription Drugs for Cash-Paying Americans
American Airlines CEO to Meet Pilots Union Amid Storm Response and Financial Concerns
FDA Targets Hims & Hers Over $49 Weight-Loss Pill, Raising Legal and Safety Concerns
Washington Post Publisher Will Lewis Steps Down After Layoffs 




